3.102 \(\int \frac {\sinh ^4(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx\)

Optimal. Leaf size=229 \[ -\frac {2 (a+b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b^2 f}+\frac {2 (a+b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right )}{3 b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {\sinh (e+f x) \cosh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {\text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right )}{3 b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

[Out]

1/3*cosh(f*x+e)*sinh(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/b/f+2/3*(a+b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)
^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/b
^2/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)-1/3*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*Ellip
ticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/b/f/(sech(f*x+e)
^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)-2/3*(a+b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/b^2/f

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3188, 479, 531, 418, 492, 411} \[ -\frac {2 (a+b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b^2 f}+\frac {2 (a+b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right )}{3 b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {\sinh (e+f x) \cosh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {\text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right )}{3 b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[e + f*x]^4/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

(Cosh[e + f*x]*Sinh[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*b*f) + (2*(a + b)*EllipticE[ArcTan[Sinh[e + f*x]]
, 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*b^2*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/
a]) - (EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*b*f*Sqrt[(Sech[
e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) - (2*(a + b)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*b^2*f)

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 3188

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sinh ^4(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \operatorname {Subst}\left (\int \frac {x^4}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \operatorname {Subst}\left (\int \frac {a+2 (a+b) x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 b f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {\left (a \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 b f}-\frac {\left (2 (a+b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 b f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {2 (a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 b^2 f}+\frac {\left (2 (a+b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 b^2 f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}+\frac {2 (a+b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {2 (a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 b^2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.96, size = 168, normalized size = 0.73 \[ \frac {b \sinh (2 (e+f x)) (2 a+b \cosh (2 (e+f x))-b)-2 i \sqrt {2} a (2 a+b) \sqrt {\frac {2 a+b \cosh (2 (e+f x))-b}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )+4 i \sqrt {2} a (a+b) \sqrt {\frac {2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )}{6 b^2 f \sqrt {4 a+2 b \cosh (2 (e+f x))-2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[e + f*x]^4/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

((4*I)*Sqrt[2]*a*(a + b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] - (2*I)*Sqrt[2]*a
*(2*a + b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] + b*(2*a - b + b*Cosh[2*(e + f*
x)])*Sinh[2*(e + f*x)])/(6*b^2*f*Sqrt[4*a - 2*b + 2*b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

fricas [F]  time = 1.89, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sinh \left (f x + e\right )^{4}}{\sqrt {b \sinh \left (f x + e\right )^{2} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sinh(f*x + e)^4/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [A]  time = 0.11, size = 344, normalized size = 1.50 \[ \frac {\sqrt {-\frac {b}{a}}\, b \sinh \left (f x +e \right ) \left (\cosh ^{4}\left (f x +e \right )\right )+\left (\sqrt {-\frac {b}{a}}\, a -\sqrt {-\frac {b}{a}}\, b \right ) \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+a \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )+2 \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b -2 \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a -2 \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b}{3 b \sqrt {-\frac {b}{a}}\, \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x)

[Out]

1/3*((-1/a*b)^(1/2)*b*sinh(f*x+e)*cosh(f*x+e)^4+((-1/a*b)^(1/2)*a-(-1/a*b)^(1/2)*b)*cosh(f*x+e)^2*sinh(f*x+e)+
a*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))+2*
(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b-2*
(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a-2*
(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b)/b
/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sinh \left (f x + e\right )^{4}}{\sqrt {b \sinh \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sinh(f*x + e)^4/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\mathrm {sinh}\left (e+f\,x\right )}^4}{\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(e + f*x)^4/(a + b*sinh(e + f*x)^2)^(1/2),x)

[Out]

int(sinh(e + f*x)^4/(a + b*sinh(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)**4/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________